EPA Region 3 Radon Stakeholder Meeting

Keynote:

Lung Cancer: Causes, Diagnosis, Treatment and Screening

9/26/2023

US Environmental Protection Agency

Pennsylvania Department of Environmental Protection

Rich Negrin, Secretary Robert Lewis, Radon Division Chief

Kansas State University National Radon Program Services

Keynote Outline

Introduction and Epidemiology

Rebecca Bascom MD MPH Professor of Medicine and Public Health Sciences

Frontline Lung Cancer Diagnosis, Treatment and Screening Yu Maw Htwe MBBS Assistant Professor of Medicine, Interventional Pulmonology

Radon, Environmental Justice and Vulnerable Populations Mia Ray BS Pulmonary Research Specialist

Questions and Discussion

Epidemiology: United States Lung Cancer

Annual new cases :
117,190 males,
118,830 females

2 among all cancers

Annual deaths:
 68, 820 males
 61, 360 females

1 among all cancers

Based on data from SEER 17 (2012–2018), <u>https://seer.cancer.gov/canques/survival.ht</u>ml American Cancer Society, Cancer Statistics 2022, https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html

Lung Cancer in EPA Region 3

Site	New Cases*	5 Year Survival (%)
Pennsylvania	62	26.8
West Virginia	78.3	20.4
Maryland	54.2	26.8
Delaware	62.2	26
D.C.	44.2	27.7
Virginia	53.9	Not available
National	56.7	25

* Age-adjusted incidence rate/100,000 Source https://www.lung.org/research/state-of-lung-cancer

Tobacco Use in the United States*

White, non-Hispanic 12.9% Black, non-Hispanic 11.7% Asian, non-Hispanic 5.4% Hispanic 7.7% Northeast 10.4%Midwest14.0%South12.4%West8.9%

18-24 years 5.3% 25-44 12.6% 45-64 14.9% ≥ 65 8.3%

Male 13.1% Female 10.1%

*Every day or some days

Tobacco Use in the United States*

% Current Tobacco Use

% Current Tobacco Use

PennState

......

*Every day or some days

Common Lung Cancer Risk Factors

South Carolina Department of Health and Environmental Control

https://19january2017snapshot.epa.gov/sites/prod uction/files/2015-01/documents/radon_zones_new_region3.pdf

Synergistic Risk Factors

Table 1: Radon Exposure in Smokers vs. Nonsmokers

If 1,000 people were exposed to this level over a lifetime*					
Radon Level	Smokers	Non-smokers			
20 pCi/L	About 260 people could get lung cancer	About 36 people could get lung cancer			
8 pCi/L	About 20 people could get lung cancer	About 15 people could get lung cancer			
4 pCi/L	About 62 people could get lung cancer	About 7 people could get lung cancer			

2022_MARTIN-THESIS_JHU EJ Eval of Radon in Penn Schools-2022.pdf

Frontline Lung Cancer Diagnosis, Treatment and Screening

Presented to EPA Region 3 Radon Stakeholder Meeting

Yu Maw Htwe, MD Assistant Professor of Medicine Interventional Pulmonology Director, Early Lung Cancer Screening Program Division of Pulmonary, Allergy & Critical Care Medicine Penn State Health, Milton S. Hershey Medical Center

yhtwe@pennstatehealth.psu.edu

Date: 09/26/2023

OUTLINE

Why Early Detection Matters

Diagnosis and Staging

Treatment

The Future: Lung Cancer Screening

Early Detection = Better Prognosis

Months since diagnosis

The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer

26% 22%

44%

(9% unstaged)

Surviving Lung Cancer in EPA Region 3

State Ranking by Survival Rate

OUTLINE

Why Early Detection Matters

Diagnosis and Staging

Treatment

The Future: Lung Cancer Screening

Steps in Lung Cancer Diagnosis and Staging

- Recognizing Evaluation is Needed
 - Symptoms
 - Screening (will discuss later)
- Diagnosing the type of lung cancer
 - Tissue sample by bronchoscopy, transthoracic, or surgical biopsy
 - Pathology and molecular analysis
- Diagnosing the stage of lung cancer

Common symptoms leading to evaluation for lung cancer

Symptom	Patients (percent)
Cough	45-74
Weight loss	46-68
Dyspnea	37-58
Chest pain	27-49
Hemoptysis	27-29
Bone pain	20-21
Hoarseness	8-18

Modified from: Hyde, L, Hyde, Cl. Chest 1974; 65:299-306 and Chute CG, et al. Cancer 1985; 56:2107-2111. © 2023 UpToDate,

Pulmonary Nodules: Earliest warning of possible lung cancer

GGO

Part solid, part GGO

Solid

Ost et al, Clinical practice. The solitary pulmonary nodule, NEJM 2003 Gould et al, Evaluation of patients with pulmonary nodules, ACCP clinical practice guideline (2nd Ed), Chest 2007

Solitary pulmonary nodule (SPN)

 Single, spherical, well-circumscribed, radiographic opacity less than or equal to 30 mm in diameter, surrounded by aerated lung and not associated with atelectasis, hilar enlargement or pleural effusion

Tools to risk stratify and diagnose lung nodules

Robotic navigational

Detailed prediction models have been developed

RZ				ung-RADS	® 2022	Release Date: November 2022	12						
RA	ng- DS	Category Descriptor	Findings			Management							
•	D ;	Incomplete Estimated Population Prevalence: ~ 1%	Prior chest CT examin Part or all of lungs ca	nation being located for co nnot be evaluated	mparison (see note 9)	Comparison to prior chest CT; Additional lung cancer screening CT imaging needed;	1			Calitary Dulmanary	ladula (SDN)		
	1	Negative Estimated Population Prevalence: 29%	No lung nodules OR Nodule with benign f - Complete, central, - Fat-containing	features: popcorn, or concentric ring	g calcifications OR	PO HIGHDI LOC I	1			Malignancy Risk Sco	re (Mayo Clin	nic Mo	del)
			Juxtapleural nodule: - < 10 mm (524 mm ³) - Solid; smooth marg Solid nodule: - < 6 mm (< 113 mm ³) - black of mm (< 113 mm ³)	mean diameter at baseline gins; and oval, lentiform, or t at baseline OR	e or new AND triangular shape						• •		
	2	Benign Based on imaging features or indolent behavior	Part-solid nodule: • < 6 mm total mean	diameter (< 113 mm ^a) at bas	seline	12-month screening LDCT				Predicts malignancy risk in solitary lung nodule	s on chest x-ray.		
	Ę	Estimated Population Prevalence: 45%	Non-solid nodule (64 - < 30 mm (< 14,137 m - ≥ 30 mm (≥ 14,137 m Airway nodule, subset Category 3 nodule th Category 3 or 4A nod Category 4B findings	SN0: mm ³ at baseline, new, or gro mm ³ stable or slow-growing egmental at baseline, new, nat is stable or decreased in fulles that resolve on follow , proven to be benion in etil.	owing OR g (see note 7) or stable (see note 11) 1 size at 6-month follow-up CT, OR eup, OR olocy following appropriate					INSTRUCTIONS Do not use in patients with prior lung cancer	IUCTIONS Is in nations with prior lung capcar diagonsis or with history of avtrathorarie		
			diagnostic workup Solid nodule: • ≥ 6 to < 8 mm (≥ 113 • New 4 mm to < 6 m	3 to < 268 mm ⁻¹) at baseline im (24 to < 113 mm ⁻¹)	OR		1			cancer diagnosed within 5 years of nodule pr	esentation.		
		Probably Benign Based on imaging features or behavior	 2 6 mm total mean at baseline OR New < 6 mm total m 	diameter (z 113 mm²) with s nean diameter (< 113 mm²)	ualid component < 6 mm (< 113 mm ^a)	6-month LDCT					1012		
	F	Estimated Population Prevalence: 9%	Non-solid nodule (GG - a 30 mm (a 14,137 m Atypical pulmonary o - Growing cystic com	SN): nm ³) at baseline or new syst: (see note 12) nponent (mean diameter) of	f a thick-walled cyst					When	to Use 🗸		
	-		Category 4A nodule t (excluding airway nod Solid nodule:	that is stable or decreased dules)	in size at 3-month follow-up CT		-						
			 28 to < 15 mm (22) Growing < 8 mm (New 6 to < 8 mm (1 Part-solid nodule: 	68 to < 1,767 mm ³) at baseli 268 mm ³ OR 13 to < 268 mm ³)	ine OR	3-month LDCT;							
4	A	Estimated Population Prevalence: 4%	 > 6 mm total mean (> 113 to < 268 mm² New or growing < 4 Airway nodule, tegm 	diameter (> 113 mm ⁻) with s) at baseline OR 4 mm (< 24 mm ³) solid comp sental or more proximal at b	eated component 2 6 mm to < 8 mm ponent baseline or new (see note 11)	PET/CT may be considered if there is a 28 mm (2268 mm ³) solid nodule or solid component				Age			years
			Thick-walled cyst C Multilocular cyst at Thin- or thick-walle	r con at baseline OR Bod cast that baccomen multiperider									1
			Airway nodule, segm Solid nodule: • 2 15 mm (2 1767 mm	nental or more proximal, and	d stable or growing (see note 11)	Referral for further clinical evaluation	<u>) ></u>	>8 mm (>250 mm³)	Comments	Nodule diameter			mm
4	в	Very Suspicious Estimated Population Prevalence: 2%	New or growing 2 8 Part-solid nodule: Solid component a New or growing 2 4	8 mm (> 268 mm*) 8 mm (> 268 mm*) at basel 4 mm (> 34 mm*) solid com;	ine OR	Diagnostic chest CT with or without contrast; PET/CT may be considered if there is a 2 8 mm (2 268 mm?) solid nodule or solid	en Consider CT at 3 months, PET/CT, or tissue sampling	, Nodules <6 mi low-risk pat	n ti Current or former smoker	No 0	Ves +1		
	ľ		Atypical pulmonary of Thick-walled cyst w Growing multilocula Multilocular cyst will pround plass or cm	cyst: (see note 12) with growing wall thickness/ ar cyst (mean diameter) OR th increased loculation or n unsolidation)	Inodularity OR t newfincreased opacity (nodular,	component; tissue sampling; and/or referral for further clinical evaluation							
			Slow-growing-solid e screening exams (see	or part-solid nodule that de e note 8)	monstrates growth over multiple	clinical evaluation, patient preference, and the probability of malignancy (see note 13)	en CT (Consider CT at 3 months. PET/CT.	Certain patients	Extrathoracic cancer diagnosis >5 years prior	No G	Vec +1	
4	X	Estimated Population Prevalence: < 1%	Category 3 or 4 nodu suspicion for lung car	les with additional features ncer (see note 14)	s or imaging findings that increase		or tissue sampling	morphology	y.	165 71	킨		
	S	Potentially Significant Estimated Population Prevalence: 10%	Modifier: May add to significant findings ur	category 0-4 for clinically s nrelated to lung cancer (see	significant or potentially clinically e note 15)	As appropriate to the specific finding			warrant 12- 1A).	Upper lobe location of tumor	No 0	Yes +1	
				Multiple									
				Low risk [†]	No routine follow-up	CT at 3–6 months, the consider CT at 18- months	ien (1–24	CT at 3–6 months, then consider CT at 18–24 months	Use most suspi managemer according to	Nodule spiculation	No 0	Yes +1	5
				High risk†	Optional CT at 12 months	CT at 3–6 months, the 18–24 months	ien at (CT at 3–6 months, then at 18–24 months	Use most suspi managemer according to	FDG-PET Optional, if performed	PET not performed		
				B: Subsolid Node	ules*				-		No uptake		
				Nodule Type	<6 mm (<100 mm ³)	Size >6 mm (>100 mm ³)	3		Comments				
				Single Ground glass	No routine follow-up	CT at 6–12 months to	, o confirm i	persistence, then CT	In certain suspi		Faint uptake		
						every 2 years until	il 5 years		follow-up at or growth de		Moderate uptake		
				Part solid	No routine follow-up	CT at 3-6 months to o	confirm pe	ersistence. If unchanged and solid	(Recommen In practice, part		Intense uptake		
						should be perform	ned for 5 y	jears.	do not usual part-solid no mm should (recommend	y require follow-up. Persistent dules with solid components ⇒6 be considered highly suspicious tations 4A+C)			
				Multiple	CT at 3–6 months. If stable consider CT at 2 and 4 years.	e, CT at 3–6 months. Su on the most suspic	ubsequent icious nodu	t management based lule(s).	Multiple <6 m are usually t selected pat (recomment	n pure ground-glass nodules senign, but consider follow-up in ients at high risk at 2 and 4 years lation 5A).			

Brock University cancer prediction equation

A <i>m a</i>				
Age	() Eample (0.6011)			
367				
Family history of lung cancer				
Fundamentary of fund cancer				
Emphysema	(0.2953)			
Nodule size	<u>15</u> mm ∨			
Nodule type	Nonsolid or ground-glass (-0.1276)			
	Partially solid (0.377)			
	○ Solid (0)			
Nodule in upper lung	J 🗹 (0.6581)			
Nodule count	t 1 # 🗸			
Spiculation	0.7729)			
Cancer	Log odds 0.22 probability 55.55 % ~			
	Decimal precision 2			
PennState				

RSNA 2018 Lung-RADS 2022

Tissue Sampling

- Traditional gold standard test or peripheral pulmonary nodule
 - CT guided biopsy
 - Pool sensitivity 90% (70-82% <1.5 cm)
 - Higher complication rate : pneumothorax (up to 15-42%), hemorrhage, air embolism, needle tract implants
- Bronchoscopic strategies for peripheral pulmonary nodules
 - Radial EBUS, thin and ultra thin scope, fluoroscopy guidance
 - Virtual navigational bronchoscopy
 - Electromagnetic navigational bronchoscopy
 - Robotic navigation bronchoscopy

j : oue to its night revy, in case or rei postuve or ci emarged mediasunal cis, videoassete mediasunoscopy (vikin) with nodal dissection or biopsy main indicated when endoscopic staging is negative. Nodal dissection has an increased accuracy over biopsy

> Algorithms guide decision-making for tissue sampling options

Tissue Sampling and Analysis Identifies the Type of Lung Cancer and Guides Treatment Decisions

Types of Lung Cancer

Non-small cell lung cancer	85%
Small cell lung cancer	15%
Non–Small Cell Lung Cancer Subtypes	
Adenocarcinoma	40%
Squamous cell carcinoma	25%
Large cell carcinoma	25%
Others	20%
Not otherwise specified	5%

Lung Cancer Staging

- Purpose: To determines if the cancer is localized, has spread to the nearby (regional) lymph nodes, or has spread to distant locations (metastasized)
- Why: To identify the best treatment options
 - Surgery
 - Chemotherapy
 - Palliative Care

Has the Cancer Spread to the Central Chest Lymph Nodes? (aka "Mediastinal Staging")

- Non-Invasive Imaging
 - Chest CT
 - PET-CT (a tracer identifies cancerous tissue)
- Tissue Sampling
 - Surgical
 - Mediastinoscopy
 - VATS (Video Assisted Thoracoscopic Surgery)
 - Interventional
 - IR guided : TTNA
 - IP : EBUS-TBNA, TBNA
 - EUS-TNA

Detailed analysis classifies early stage lung cancer

Detterbeck F. et al. Chest. 2017: 151(1):193-203.

Examples of more advanced lung cancer stages

Figure 3 – Graphic illustration of stage III.

Detterbeck F, et al. Chest. 2017; 151(1):193-203.

Metastatic lung cancer: The most advanced

Figure 4 – Graphic illustration of stage IV.

A different staging system is used for a particular subset of Lung Cancer, termed Small Cell Lung Cancer (SCLC)

@ucsdim

OUTLINE

Why Early Detection Matters

Diagnosis and Staging

Treatment

The Future: Lung Cancer Screening

Lung Cancer Type and Stage Guide Treatment Recommendations

Curr. Treat. Options in Oncol. (2021) 22: 71

The Era of Personalized Cancer Care has arrived: Molecular Profiling of Lung Cancer Tissue Guides Pharmacotherapy Treatment Recommendations

• EGFR Mutation

- 1st line : Afatinib or Osimertinib
- 2nd line: Erlotinib or Geftinib or Dacomtinib
- KRAS Mutation
 - Systemic chemotherapy
- ALK Mutation
 - Alectinib, brigatinib, certinib or lorlatinib
- ROS1 rearrangement positive
 - 1st line: Entrecitinib, Crizotinib
 - 2nd line: Certinib
- PD-L 1 > 50%
 - Atezolizumab, Cemiplimab

NCCN Guidelines NSCLC, Version 3.2022

J Natl Compr Canc Netw 2022;20(5):497-530 doi: 10.6004/jnccn.2022.0025

Molecular Signature of the Lung Cancer Guides Detailed, **Precise Algorithms for Therapy or Immunotherapy**

EGFR Exon 19 Deletion or L858R

- First-line therapy
- Afatinib¹
- Erlotinib²
- Dacomitinib³
- ▶ Gefitinib^{4,5}
- Osimertinib⁶
- Erlotinib + ramucirumab⁷
- Erlotinib + bevacizumab^c (nonsquamous)⁸
- Subsequent therapy
- Osimertinib⁹

EGFR S768I, L861Q, and/or G719X

- First-line therapy ► Afatinib^{1,10}
- ► Erlotinib²
- Dacomitinib³
- Gefitinib^{4,5}
- Osimertinib^{6,11}
- Subsequent therapy
- Osimertinib⁹

EGFR Exon 20 Insertion Mutation Positive

- Subsequent therapy
- ► Amivantamab-vmjw¹²
- Mobocertinib¹³

KRAS G12C Mutation Positive

- Subsequent therapy
- Sotorasib¹⁴

ALK Rearrangement Positive

- First-line therapy
- ► Alectinib^{15,16}
- Brigatinib¹⁷ ► Ceritinib¹⁸
- Crizotinib^{15,19}
- ► Lorlatinib²⁰
- Subsequent therapy
 Alectinib^{21,22}
- Brigatinib²³
- Ceritinib²⁴
- ► Lorlatinib²⁵

ROS1 Rearrangement Positive

- First-line therapy
- ► Ceritinib²⁴
- Crizotinib²⁷
- Entrectinib²⁸
- Subsequent therapy
- Lorlatinib²⁹
- ► Entrectinib²⁸

BRAF V600E Mutation Positive

- First-line therapy
- Dabrafenib/trametinib^{30,31}
- Dabrafenib³⁰
- Vemurafenib
- Subsequent therapy
- Dabrafenib/trametinib^{31,32}

NTRK1/2/3 Gene Fusion Positive

- First-line/Subsequent therapy
- ► Larotrectinib³³
- Entrectinib³⁴

MET Exon 14 Skipping Mutation

- First-line therapy/Subsequent therapy
- Capmatinib³⁸
- Crizotinib³⁶
- ▶ Tepotinib³⁷

RET Rearrangement Positive

- First-line therapy/Subsequent therapy
- Selpercatinib³⁸
- Pralsetinib³⁹
- Cabozantinib^{40.41}

PD-L1 ≥1%

- First-line therapy^d
- ▶ Pembrolizumab⁴²⁻⁴⁴
- (Carboplatin or cisplatin)/pemetrexed/ pembrolizumab (nonsquamous)45,46
- Carboplatin/paclitaxel/bevacizumab^c/ atezolizumab (nonsquamous)47
- Carboplatin/(paclitaxel or albumin-bound) paclitaxel)/pembrolizumab (squamous)48
- Carboplatin/albumin-bound paclitaxel/ atezolizumab (nonsquamous)48
- Nivolumab/ipilimumab⁴⁹
- Nivolumab/ipilimumab/pemetrexed/ (carboplatin or cisplatin) (nonsquamous)50
- Nivolumab/ipilimumab/paclitaxel/carboplatin (squamous)⁵⁰

PD-L1 ≥50% (in addition to above)

- First-line therapy^d
- Atezolizumab^{5*}
- ▶ Cemiplimab-rwlc⁵²

.....

OUTLINE

Why Early Detection Matters

Diagnosis and Staging

Treatment

The Future: Lung Cancer Screening

Lung Cancer Screening has come a long way A Brief History

1996	2004		
Routine screening with chest x-ray or sputum cytology NOT recommended	2004 Evidence insufficient to recommend screening	2013 Recommend annual low-dose chest computerized tomography (LDCT), age 55-80, 35 pack- years, active smoking or quit < 15 years ago	
L			

Low Dose Chest CT scans reduce lung cancer mortality: two key studies

2000	2005	2010	2015	2022
Powered studies				
NLST LDCT vs CXR	Age 55–75 years, ≥30 PY smokin	g, <10 years ex-smoker (<i>n</i> = 53,454)	LDCT reduces lung cancer-related m	ortality (HR 0.80; <i>P</i> < 0.004)
NELSON ª LDCT vs no interve	Age 55–75 y	/ears, ≥15 PY smoking, <10 years ex-	LDC smoker (<i>n</i> = 15,789) rela 95%	CT reduces lung cancer- ted mortality (HR 0.76, 5 CI 0.62–0.94 in men)

Oudkerk, et al. Nature Rev Clin Onc. 2021.
Low Dose Chest CT scans reduce lung cancer mortality in both women and men

Hoffman RM, Atallah RP, Struble RD, Badgett RG. Lung Cancer Screening with Low-Dose CT: a Meta-Analysis. J Gen Intern Med. 2020 Oct;35(10):3015-3025. doi: 10.1007/s11606-020-05951-7. Epub 2020 Jun 24. PMID: 32583338; PMCID: PMC7573097.

United States Preventive Services Task Force Guidelines for Low Dose Chest CT Lung Cancer Screening

	USPSTF Guidelines 2013-2021	USPSTF Guidelines 2021	
Age	55-80 years	50-80 years	
Smoking History	30 or more pack years (this means 1 pack a day for 30 years, 2 packs a day for 15 years, etc.)	ore pack years (this means 1 pack a day for , 2 packs a day for 15 years, etc.) 20 or more pack years (this means 1 pack a day for 20 years, 2 packs a day for 10 years, etc.)	
Smoking Status	Current smoker or quit within the last 15 years		

PennState

https://www.uspreventiveservicestaskforce.org/uspstf/recommendation-topics/

Potential Harm of LDCT

COMPARING SOURCES OF RADIATION

Radiation

- Risk of false positives, lead-time bias, subsequent risk of biopsy
- Psychosocial stress related to screening

Lowenstein L, Nishi S. *Transl Lung Cancer Res.* 2018. Gutierrez A, et al. *Sem Int Rad.* 2013.

PA High Risk Lung Cancer Screening Rates in EPA Region 3 MD DC WV VA 18 Top Percent of High-Risk Population Receiving Screening Tier 16 Above Average Tier Average 14 Tier 12 Below Average Tier 10 Bottom 8 Tier Pennsylvania 6 Delaware virginia Marylan 4 2 0 **PennState**

DE

Lung Cancer Screening Program at Penn State

- YuMaw Htwe, MBBS, Director
- Multidisciplinary Lung Cancer Screening Group meets monthly
 - Track Screening Program
 - Increase awareness, screening rates, and proportion of early stage lung cancer cases
 - Impact lung cancer in the Penn State Cancer Institute catchment area
- Lung View Database
 - September 2021
 - To tract all lung cancer screens performed in Penn State Health System
 - Provide tracking and management for lung cancer screening results

LungView

HOME SOLUTIONSY CONTACT

Lung Screening Information System

LungView is the most comprehensive tracking and reporting system dedicated to the management of lung screening programs and nodule clinics.

Lung Cancer Screening Program at Penn State

- Our Team
 - Trevor Eiswerth, RN Program Coordinator
- Eligibility Criteria
 - 50-80 years old, 20 pack-years , current smoker or quit within the last 15 years
- For referral to us
 - Self referral : 1-866-778-5864
 - For providers: 717-531-6985
 - E message : Lung Cancer Screening
 - Email: teiswerth@pennstatehealth.psu.edu

Lung Cancer Screening Program at Penn State

- Lung View Database
- Uses the Lung-RADS classifications for LDCT screenings.
 - Lung-RADS category 0 is an incomplete result
 - Lung-RADS categories 1 to 2 constitute negative screening results
 - Lung-RADS categories 3 to 4 constitute positive results
- Follow-up
 - Our team will reach out to patients and providers with the following criteria
 - Patients :
 - All lung RADs 1 &2 for annual follow up screening –reminder email.
 - All lung RADs 0, 3 & 4 will receive a call to arrange for follow up either by providers or Interventional Pulmonology
 - Providers:
 - All lung RADs 0, 3 & 4 will receive a call to arrange for follow up
 - To reach out our coordinator Mr. Eiswerth : 717-531-0003 ext 289397

Lung Screening Information System

LungView is the most comprehensive tracking and reporting system dedicated to the management of lung screening programs and nodule clinics.

LundView

Lung Cancer Risk Reduction Efforts: Smoking Cessation Program at Penn State

- Our team
 - Linda Farling , MSN, CRNP, FNP-BC, NCTTP Counselor
 - Natasha Breen PA-C, TTS Counselor
 - Trevor Eiswerth, RN Coordinator
- Structure
 - Initial visit is 30-60 min, prefer in person but telehealth options available
 - Length of program is individualized
 - Focus : Behavior Modification and Nicotine Replacement therapy
- For referral
 - Telephone: 717-531-6985
 - E message : PSH Smoking Cessation Pool
 - Email: teiswerth@pennstatehealth.psu.edu

SUMMARY

Lung cancer survival is much better when cancer is detected at an early stage

Only one-quarter of lung cancer cases are currently diagnosed at early stage

Treatment options are personalized, based on cancer type and stage, and new molecular markers

Effective lung cancer screening offers a chance to improve lung cancer outcomes through early stage detection and curative therapies.

Lung cancer risk reduction includes attention to smoking cessation and radon exposure reduction

Radon, Environmental Justice, & Vulnerable Populations

Mia Ray B.S. Penn State College of Medicine 9/26/2023 EPA Region 3 Radon Stakeholder Meeting

OUTLINE

Environmental Justice

Mapping Radon & EJ Communities in Pennsylvania

EJScreen: EPA Region 3 Cancer Disparities

Dimensions of Vulnerability

Implementation Science: Frameworks for Solutions

Environmental Justice

"The fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income, with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies"

Environmental Justice Communities are Overburdened

- Minority, low-income, tribal, or indigenous populations or geographic locations in the United States that:
 - potentially experience disproportionate environmental harms and risks.
- This disproportionality can be as a result of:
 - greater vulnerability to environmental hazards,
 - lack of opportunity for public participation,
 - or other factors.

OUTLINE

Environmental Justice

Mapping Radon & EJ Communities in Pennsylvania

EJScreen: EPA Region 3 Cancer Disparities

Dimensions of Vulnerability

Implementation Science: Frameworks for Solutions

Questions

- 1. Is elevated radon found in Pennsylvania?
- 2. Are there EJ communities in Pennsylvania
- 3. Are EJ communities in Pennsylvania only urban?
- 4. Are there cancer disparities in Region 3?

Elevated radon levels throughout Pennsylvania

PennState

National Environmental Public Health Tracking Network Data Explorer (cdc.gov)

EJ Scores in Pennsylvania

Dark Blue= Highest EJ score

EJ score is based on indices of poverty & proportion of non-white minority population

https://gis.dep.pa.gov/PennEnviroScreen/

EJ Communities exist in urban & rural PA

Dark blue= High EJ Score Light yellow= Low EJ Score

Pale yellow-light green = Rural areas Dark green= urban areas

https://www.ers.usda.gov/webdocs/DataFiles/53180/25593_PA.pdf?v=0

OUTLINE

Environmental Justice

Mapping Radon & EJ Communities in Pennsylvania

EJScreen: EPA Region 3 Cancer Disparities

Dimensions of Vulnerability

Implementation Science: Frameworks for Solutions

EPA EJScreen Shows Region 3 Cancer Disparities

https://ejscreen.epa.gov/mapper/

U.S. Lung Cancer Disparities by Race

Lung Cancer Disparities among Black Americans =

Highcharts.com

PennState

.....

OUTLINE

Environmental Justice

Mapping Radon & EJ Communities in Pennsylvania

EJScreen: EPA Region 3 Cancer Disparities

Dimensions of Vulnerability

Implementation Science: Frameworks for Solutions

Dimensions of Vulnerability

Built Environment

Radon Awareness

Radon Testing

Radon Remediation

PennState

Dimensions of Vulnerability

Built Environment

 Structural Integrity of buildings & homes

.....

Radon exposure risk and Building features

- Found mainly in soil, rocks & air
- Travels through cracks and gaps in building foundations
 - Also through construction materials

Radon Testing in Watertown MA - New England Radon

Linking low income to Radon exposure risk

Homes with cracks in floor, wall, or ceiling, %

Homes with holes in floor, %

Household income

Adamkiewicz G, Zota AR, Fabian MP, Chahine T, Julien R, Spengler JD, Levy JI. Moving environmental justice indoors: understanding structural influences on residential exposure patterns in low-income communities. Am J Public Health. 2011 Dec;101 Suppl 1(Suppl 1):S238-45. doi: 10.2105/AJPH.2011.300119. Epub 2011 Aug 11. PMID: 21836112; PMCID: PMC3222513.

Other possible contributors to indoor radon

FIGURE 1—Conceptual framework—contributors to indoor environmental exposure.

Adamkiewicz G, Zota AR, Fabian MP, Chahine T, Julien R, Spengler JD, Levy JI. Moving environmental justice indoors: understanding structural influences on residential exposure patterns in low-income communities. Am J Public Health. 2011 Dec;101 Suppl 1(Suppl 1):S238-45. doi: 10.2105/AJPH.2011.300119. Epub 2011 Aug 11. PMID: 21836112; PMCID: PMC3222513.

Dimensions of Vulnerability

Built Environment

Radon Awareness

 Lack of effective radon-risk communication

A Systematic Review of Radon Risk Perception, Awareness, and Knowledge

- Objective: To study the effectiveness of radon risk-reduction communication in the recent research
- Results
 - Knowledge of radon risk is low when there is no specific communication on the topic
 - In high risk areas (EJ communities), federal information campaigns did not reach these communities
 - Health personnel were found to have insufficient knowledge about radon

Cori, L., Curzio, O., Donzelli, G., Bustaffa, E., & Bianchi, F. (2022). A Systematic Review of Radon Risk Perception, Awareness, and Knowledge: Risk Communication Options. *Sustainability*, *14*(17), 10505. MDPI AG. Retrieved from http://dx.doi.org/10.3390/su141710505

Dimensions of Vulnerability

Built Environment

Radon Awareness

Radon Testing

- Lack of access to testing materials
- Lack of knowledge on how to test for radon

PennState

Predictors of Community Low Screening Rates: Residential Segregation > Income 1990, 2000 and 2010

Radon Testing in Schools

	COUNTY	EJ AREA TESTS	TOTAL TESTS	PERCENT EJ AREA
	ALLEGHENY	285	1432	19.90
	BUCKS	158	4800	3.29
	CUMBERLAND	341	2021	16.87
	DAUPHIN	2569	3144	81.71
	LEHIGH	730	3027	24.12
	PHILADELPHIA	77	106	72.64

Figure 23: Percent of Testing Data in Environmental Justice Areas

Dimensions of Vulnerability

Built Environment

Awareness

Testing

Remediation

- Lack of access to radon mitigation services
- Cannot afford radon mitigation services

PennState

Remediation

- EJ communities do not have access/cannot afford radon mitigation tools/services.
 - Ex: Ventilation systems, certified radon professionals
- This can lead to disproportionate radon exposure in EJ vs non-EJ communities

AC Ventilation can mitigate radon concentration levels

Before/After ventilation in room + Living room

Decreased Central Air Conditioning & Household Race

Adamkiewicz G, Zota AR, Fabian MP, Chahine T, Julien R, Spengler JD, Levy JI. Moving environmental justice indoors: understanding structural influences on residential exposure patterns in low-income communities. Am J Public Health. 2011 Dec;101 Suppl 1(Suppl 1):S238-45. doi: 10.2105/AJPH.2011.300119. Epub 2011 Aug 11. PMID: 21836112; PMCID: PMC3222513.

OUTLINE

Environmental Justice

Mapping Radon & EJ Communities in Pennsylvania

EJScreen: EPA Region 3 Cancer Disparities

Dimensions of Vulnerability

Implementation Science: Frameworks for Solutions

Implementation Science

- Goal: To integrate evidence-based practices and interventions on a community-based level in order to improve the impact on population health
- Provides a Framework to Address Radon Mitigation Disparities

2011 Federal Radon Action Plan: Population approach to radon exposure

- Accomplishments:
 - Completed 88% of their commitments
 - Awareness and education efforts reached 1.6 million homes, schools, and childcare facilities
 - Aim: 860,000
 - 12.5% were tested and mitigated as seen fit
 - Higher rates of radon mitigation
 - Radon introduced in 27 CDC cancer plans

The Federal Radon Action Plan (Environmental Protection Agency & U.S. Department of Health and Human Services

2021-2025 National Radon Action Plan Aims

- Built in Risk reduction
 - Local, State, Federally backed policies requiring radon testing + Mitigation
- Support Radon Risk Reduction
 - Inclusion of radon in all exposure and cancer control plans
- Build Capacity for Professional Radon Services
 - Expand availability of radon professional networks/ radon data
- Increase Awareness of Radon Risk + Control Strategies
 - Tailor radon awareness messaging to vulnerable and overburdened populations

Increasing awareness

- Education & Awareness can affect rates of radon testing
- Recommendation:
 - Identify EJ communities
 - Raise local awareness about radon
 - Use community partners and engagement for messaging about radon and why they are at risk for exposure disparities

EJ Community Members Deserve a Seat at the Table

- Local community engagement about radon & health risks is crucial to increasing awareness in EJ communities
- Recommendation for engagement activities:
 - Workshops
 - Informational sessions
 - Townhalls
 - Link with environmental Justice grassroots organizations
- Question:
 - How can radon risk-reduction professionals/advocates ensure they are meeting the specific needs of EJ communities?
 - Need to track community level rates of testing and mitigation

Increase data collection about other environmental factors

- Collecting data on a local scale can identify communities in need of radon mitigation services
- Recommendation:
 - Don't work on radon as an isolated issue:
- Its not just radon:
 - Income
 - Renting vs Owning
 - Exposure to other Pollutants
 - Everyday life (competing priorities, resource limitations)

Creating sustainability for radon mitigation

- Introducing laws requiring radon testing and mitigation
 - Requiring financial assistance for radon mitigation for communities in need
 - Requiring testing for radon in schools
- Funding/Creating radon mitigation programs in EJ Communities
 - Lending programs
 - Financial assistance programs
 - Funded radon testing and mitigation certification programs

It Takes All of Us!

Health Specialists

- Local Allergy and Asthma Treatment Centers
- Immunologists
- Ear, Nose and Throat Specialists
- Pulmonologists
- Pediatric Physicians
- General Practitioners
- Local Hospitals (Community Investment)

Care Givers

• In-home Nurses and Care Givers

Local Government

- Public Health Agencies
- Certified Lead Paint Abatement Contractor
- Licensed Mold Remediation Service Provider
- Become a Certified Radon Tester
- Federal/State Certification for Asbestos Remediation

Educators

- Provide Information to Parent/Teacher Assns.
- Integrate healthy housing into CC curricula

Real Estate Professionals

- Realtors, Appraisers, and Inspectors
- Lenders

Shows

- Bridal Shows
- Pet Shows (differentiate from the home & garden crowd)

Media

- Provide Case Studies to Local TV, Radio and Newspapers
- Participate in Social Media Sites Relating to Health Issues
- Build a Strong Web Site with Credible Information
- Engage SEO/SEM and Lead Generation Consultants

Questions? <u>rbascom@pennstatehealth.psu.edu</u> mray4@pennstatehealth.psu.edu yhtwe@pennstatehealth.psu.edu

