- How often is indoor radon a problem?
- How does radon get into a building?
- Can the radon level in a building's air be predicted?
- Do radon levels increase with the age of a home?
How often is indoor radon a problem?
Nearly one out of every 15 homes has a radon level the EPA considers to be elevated—4 pCi/L or greater. The U.S. average radon-in-air level in single family homes is 1.3 pCi/L. Because most people spend as much as 90 percent of their time indoors, indoor exposure to radon is an important concern.
How does radon get into a building?
Most indoor radon comes into the building from the soil or rock beneath it. Radon and other gases rise through the soil and get trapped under the building. The trapped gases build up pressure. Air pressure inside homes is usually lower than the pressure in the soil. Therefore, the higher pressure under the building forces gases though floors and walls and into the building. Most of the gas moves through cracks and other openings. Once inside, the radon can become trapped and concentrated.
Openings which commonly allow easy flow of the gases in include the following:
- Cracks in floors and walls
- Gaps in suspended floors
- Openings around sump pumps and drains
- Cavities in walls
- Joints in construction materials
- Gaps around utility penetrations (pipes and wires)
- Crawl spaces that open directly into the building
Radon may also be dissolved in water, particularly well water. After coming from a faucet, about one ten thousandth of the radon in water is typically released into the air. The more radon there is in the water, the more it can contribute to the indoor radon level.
Trace amounts of uranium are sometimes incorporated into materials used in construction. These include, but are not limited to concrete, brick, granite, and drywall. Though these materials have the potential to produce radon, they are rarely the main cause of an elevated radon level in a building.
Outdoor air that is drawn into a building can also contribute to the indoor radon level. The average outdoor air level is about 0.4 pCi/L, but it can be higher in some areas.
While radon problems may be more common in some geographic areas, any home may have an elevated radon level. New and old homes, well-sealed and drafty homes, and homes with or without basements can have a problem. Homes below the third floor of a multi-family building are particularly at risk.
Can the radon level in a building's air be predicted?
No, it is not possible to make a reliable prediction.
The only way to determine the level is to test. the EPA and the Surgeon General recommend testing all homes below the third floor for radon.
A map of radon zones has been created to help national, state, and local organizations to target their resources and to implement radon-resistant building codes. However, the map is not intended to be used for determining if a home in a given zone should be tested for radon. Homes with elevated levels of radon have been found in all three zones.
In addition, indoor radon levels vary from building to building. Do not rely on radon test results taken in other buildings in the neighborhood—even ones next door—to estimate the radon level in your building.
Contact your state radon office for information about radon in your local area. The Internet is also a source of information about radon levels in some states.
Do radon levels increase with the age of a home?
No. The only way to know the radon level in any home, regardless of its age, foundation type, heating system, air tightness, or building materials, is to conduct a test. Elevated radon has been found in brand new homes and homes over 150 years old.